Photons in a Refractive Medium

A Quora question asks:Given that light is massless, and that all massless particles travel at the speed of light, it should follow that in a medium with a refractive index >1 (where light slows down), it acquires mass and experiences time. Why is this not the case?

It is not always true that “light is massless”. For example light trapped in a reflective container contributes to the rest mass of the system consisting of the container and its contents.

It is not obvious that massless particles always travel at the speed of light (but unless they are doing so they have zero momentum and so don’t change the momentum of things they collide with).

The speed of a photon is always equal to the vacuum speed of light in between its interactions with matter, but the probability of detecting a photon travelling through a medium is calculated from a sum of probability amplitudes associated with all possible paths including those which involve interacting with atoms in the medium. Since many of these paths are indirect, their lengths are greater than the straight line distance and so the average time taken corresponds to a speed less than that of light in a vacuum.

[Some answers have suggested also delays due to absorption and re-emission but if these really happened with random delays they would destroy the coherence and so in a perfectly clear medium the interactions are all effectively just instantaneous reflections off bound electrons (with minimal energy transfer due to the masses of the nuclei).]

One might be tempted to look for a way of describing the result in terms of effective photons with mass; but we can’t expect any proper Lorentz covariant theory of such particles since the medium is only stationary in a particular inertial frame, and in relatively moving frames it appears contracted which changes the density and so the index of refraction (in a direction dependent way).

Source: (1000) Alan Cooper’s answer to Given that light is massless, and that all massless particles travel at the speed of light, it should follow that in a medium with a refractive index >1 (where light slows down), it acquires mass and experiences time. Why is this not the case? – Quora

One-way speed of light

Some authors (referenced in this Wikipedia article ) have alleged that The “one-way” speed of light, from a source to a detector, cannot be measured independently of a convention as to how to synchronize the clocks at the source and the detector – and that this somehow has important implications with regard to the interpretation and application of Special Relativity.

But I beg to differ.

Consider the scenario of two remote systems, B and C, that are stationary with respect to us who, let us say, are at position A. Now let a light signal from B be emitted towards both C and A, and let C, on receiving that signal immediately signal towards us at A. The time delay between our receipt of the two signals will be the light travel time from B to C plus the difference between the light travel times to us from B and C.

So, if we let [math]t_{XY}[/math] be the light travel time from X to Y,  then the time difference between the direct and indirect signals starting at B is given by [math]\Delta t_B = (t_{BC} +t_{CA})-t_{BA}[/math].

And if we do the process in reverse for signals starting at C we get a time difference of [math]\Delta t_C = (t_{CB} +t_{BA})-t_{CA}[/math].

So, if we get the same time difference both ways, then we’ll know that  [math](t_{BC} +t_{CA})-t_{BA} = (t_{CB} +t_{BA})-t_{CA}[/math],

which gives [math]t_{BC} -t_{CB} =2 (t_{BA}-t_{CA})[/math].

So in that case the difference between light travel times from B to C and from C to B is exactly twice the difference between the travel times from B to A and C to A.

Now let’s restrict to the case where B and C are separated by a distance [math]d[/math] and are both at the same distance [math]D[/math] from A, and let [math]v_{XY}[/math] be the speed of light in the direction from X to Y and [math]v_0[/math] be the speed in the perpendicular direction towards A from the midpoint of the line BC.

Then for the case of equal time differences both ways our previous result becomes [math]\frac{d}{v_{BC}} -\frac{d}{v_{CB}} =2 (\frac{D}{v_{BA}}-\frac{D}{v_{CA}})[/math].

In the case that A is midway between B and C (which is what the equidistance gives us in the case of one space dimension) we have  [math]d=2D[/math] with [math]v_{BA}=v_{BC}[/math] and [math]v_{CA}=v_{CB}[/math], so the equal time differences condition is just that [math]\frac{d}{v_{BC}} -\frac{d}{v_{CB}} =2 (\frac{d/2}{v_{BC}}-\frac{d/2}{v_{CB}})[/math] – which is clearly always true even if the two one-way speeds are different.

For the case that A is not on the line BC, if we let  [math]\omega=2\theta[/math] be the angle at A between AB and AC then [math]d=2D\sin{\theta}[/math] and the condition of equal time differences becomes [math]2D\sin{\theta}(\frac{1}{v_{BC}} -\frac{1}{v_{CB}}) =2D (\frac{1}{v_{BA}}-\frac{1}{v_{CA}})[/math].

If we let [math]v_{\theta}[/math] denote the speed of light in direction at angle [math]\theta[/math] from the right bisector of BC, and [math]T_{\theta}=\frac{1}{v_{\theta}}[/math], and if the equal time condition is observed in all directions, then we need to find a function [math]T_{\theta}[/math] satisfying the conditions [math](T_{\theta+\phi}-T_{-\theta+\phi})=\sin{\theta}(T_{\pi/2+\phi}-T_{-\pi/2+\phi})[/math]

Source: One-way speed of light – Wikipedia

Ron Davis’s answer to Who clocked the speed of light and how did they clock it? What instrument did they use and when? – Quora

Source: (1001) Ron Davis’s answer to Who clocked the speed of light and how did they clock it? What instrument did they use and when? – Quora