Latex Tester

Inline formulas:
Example 2.Let m, n0, k, and r0 be whole numbers. Explain why m(kr)n=mknr.

DisplayMath with inserted text:
Step 1:By Definition 1, in Module 1, (nr)(m(kr)n)=r(n(m(kr)n))=r(m(kr))=m(r(kr))=mk
DisplayMath with inserted text:
Step 2: By Definition 1, in Module 1, (nr)(mknr)=mk Inline Formulas w/o textbf:
Step 3: From steps 1 and 2 we have, (nr)(m(kr)n)=(nr)(mknr) which can only happen if m(kr)n=mknr.

\

\
\textbf{Exercise 1.}
Geometrically prove why $A(R(5,b))=A(R(1,5b))$.\
\
\textbf{Exercise 2.}
Geometrically prove why $A(R(7,b))=A(R(1,7b))$.\
\
\textbf{Exercise 3.}
Let $n$ be any whole number. Explain why $A(R(n,b))=A(R(1,nb))$.\
\
\textbf{Example 2.}
Geometrically prove why $A(R(\frac{1}{5},b))=A(R(1,\frac{b}{5}))$.\
\
\textbf{Step 1:} The figure below shows that $R(1,b)$ can be divided into five rectangles that are all congruent to $R(\frac{1}{5},b))$. This implies $A(R(1,b))=5A(R(\frac{1}{5},b))$.\

Geometrically prove why A(R(15,b))=A(R(1,b5))

Geometrically prove why $A(R(\frac{1}{5},b))=A(R(1,\frac{b}{5}))$

Leave a Reply

Your email address will not be published. Required fields are marked *